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Investigation of the Aerodynamics Performance of 

Horizontal Axis Wind Turbine Rotor 
Daramola Oyewole Olufemi 

Abstract – In order to convert wind energy to mechanical energy, the design of the axis wind turbine is very crucial, the rotor is 

an important component of the wind turbine. This study investigates the aerodynamics performance of horizontal axis wind turbine 

rotor. By obtaining the power coefficient, we found that about forty percent of the kinetic energy of the undisturbed wind flowing to 

the swept area of the rotor can be extracted as useful power. Also, we found that the twisting of the blades of a horizontal axis 

wind turbine has a positive impact on the performance of its rotor, as twisting optimize angle of attack and maximize the lift force. 

Other factors such as high lift-to-drag ratio, high maximum lift coefficient and high tip speed ratio were found to bring about 

improvement to the performance of a horizontal axis wind turbine. 

Index Terms – Wind turbine, aerodynamics, horizontal wind turbine, turbine blade 

 

 

1 INTRODUCTION 

Wind energy has risen to become one of the most applied form 

of renewable energy [1]–[5]. Different processes and plants 

utilizes wind energy [6]–[17]. Horizontal axis wind turbine is the 

most commercially available and has gained the attention of 

investors [18]. 

The aerodynamic performance of an Horizontal Axis wind 

turbine rotor depends largely on design parameters including 

number of blades, airfoil shapes, blade twist along the rotor 

radius, blade pitch, tip speed ratio and rotor hub height (or tower 

height) [19]: 

In addition, the aerodynamic performance of a Horizontal Axis 

Wind Turbine rotor can be evaluated using: Blade Element 

Theory and Momentum Theory [19]. The blade element theory 

assumes that each blade of a horizontal axis wind turbine can 

be divided into many small “elements” that are independent of 

other elements and operates aerodynamically as 2D air-foils 

[19]. Also, the blade theory is based on two main assumptions: 

No aerodynamic interactions exist between the different blade 

elements and the lift and drag coefficients solely determine the 

forces on the blade elements [20]. 

 On the other hand, the momentum theory considers 

momentum loss through the plane of the rotor based on work 

done by the wind [19]. The combination of “blade element” and 

“momentum” theories give arise to the Blade Element 

Momentum (BEM) theory [19]. The “BEM” theory is used to 

determine the total thrust and thrust on a horizontal axis wind 

turbine blade through an iterative process- which is carried out 

for each blade element [19]. The iterative process for each 

blade element is as follows: 

1. Initialize the tangential induction factor, 𝑎′, to be zero and 

the axial induction factor, a, to be any value. 

2. Determine the inflow angle, ∅, using:   

   ∅ = tan−1[
𝑈∞(1−𝑎)

𝛺𝑟(1+𝑎′)
] 

3. Determine the angle of attack ”a” for the airfoil: α=∅ − 𝛽. 

4. Check for the drag and lift coefficient, 𝐶𝐷and 𝐶𝐿from the 

performance dataset gotten from XFOIL or XFLR5 

program. 

5. Determine the thrust and torque contribution from the 

annulus using Blade Element Theory: 

Total thrust “dT” for “B” number of blades is given as: 

dT=
𝐵

2
ρ𝑉2

𝑡𝑜𝑡𝑎𝑙[𝐶𝐿 cos ∅+𝐶𝐷 sin ∅]cdr. 

Also, the total torque “dQ” for “B” number of blades is given 

as: 

dQ=
𝐵

2
ρ𝑉2

𝑡𝑜𝑡𝑎𝑙[𝐶𝐿 sin ∅-𝐶𝐷 cos ∅]crdr. 

6. Update the values of axial induction factor “a” and 

tangential induction  

factor "𝑎′", using the momentum theory. The following 

equations are used to update the values of the two 

induction factors: 

Thrust extracted by each rotor annulus, dT= 4𝜋rρ𝑈∞
2(1-a) 

adr 

Torque extracted by each rotor annulus, dQ= 4𝜋𝑟3ρ𝑈∞𝛺 (1-

a) 𝑎′dr. 

7. Repeat the above procedures from step 2 to step 6 until the 

values of “a” and "𝑎′" converge. 

8. The above calculation is done for each element. Thus, we 

can sum up the thrust and torque of all the elements to 

obtain the rotor thrust and torque. Finally, the power 
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generated by the rotor and its power coefficient are 

calculated. 

1.1 Estimation of Reynold’s Number and The Local 

Total   Velocity 

The given parameters in the question include: 

Rotor radius ‘R’=6m,   

Diameter of Rotor ‘D’=2R=2×6=12m 

Length of blade, L=5m   

Airfoil adopted = ”NACA 0020” 

Chord Length ‘c’=1m   

Angular velocity of rotor ‘𝛺′=6rad/s 

Natural wind speed ‘𝑈∞′=8m/s  

Density of air ‘ρ’=1.2kg/𝑚3 

Viscosity of air ‘µ’=1.8×10−5𝑘𝑔𝑚−1𝑠−1 

a.   To calculate local total velocity at mid-span of the blade 

“𝑉𝑡𝑜𝑡𝑎𝑙 ", the diagram below is considered: 

 

Figure 1:  Vector representation of the velocity 

components of a wind turbine blade [19]. 

From Pythagoras’ theorem: 

 𝑉2
𝑡𝑜𝑡𝑎𝑙=[ 𝛺r(1 + 𝑎′)]2 + [𝑈∞(1 + a)]2 

Where axial induction factor “a” and tangential induction factor 

“𝑎′" equal to zero 

Thus, 𝑉𝑡𝑜𝑡𝑎𝑙 becomes: 

 𝑉2
𝑡𝑜𝑡𝑎𝑙=(𝛺𝑟)2+𝑈∞

2 where r=3.5m (i.e. radius at mid-span of the 

blade) 

Recall, Linear velocity of rotor rotation at mid-span v= 𝛺𝑟=6×

3.5 =21m/s 

 𝑉2
𝑡𝑜𝑡𝑎𝑙=212 + 82= 441+64= 505 

 𝑉𝑡𝑜𝑡𝑎𝑙=√505=22.5m/s≈23m/s 

Therefore, the total local velocity at mid-span of the blade, 𝑉𝑡𝑜𝑡𝑎𝑙 

is 23m/s. 

Representative Reynold’s number for the rotating blades ‘Re’: 

Re=
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎𝑖𝑟×Total local velocity×Charasteristic length

𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎𝑖𝑟
=

ρ×𝑉𝑡𝑜𝑡𝑎𝑙×c

µ
 

           Where characteristic length = chord length=’c’  

           Re=
1.2×23×1

1.8×10−5
=1,533,333= 1.5× 106 

Therefore, the Reynold’s number for the rotating blades is 

1.5× 106 . 

1.2  Aerodynamic Coefficients and X-foil Program 

Execution 

1.2.1. Definition of Aerodynamic Coefficients 

The definitions of lift and drag coefficients are as shown below: 

Lift coefficient is a dimensionless parameter that shows the 

relationship between the lift force ‘𝐹𝐿’ acting on a 2D airfoil, 

density of air ‘ρ’, wind speed ‘U’ and reference area ‘A’. 

Lift Coefficient, 𝐶𝐿=
𝐹𝐿

1

2
𝜌𝑈2𝐴

     

Drag coefficient is a dimensionless parameter that indicates the 

relationship between the drag force ‘𝐹𝐷’ acting on a 2D airfoil, 

density of air ‘ρ’, wind speed ‘U’ and reference area ‘A’. 

Drag Coefficient, 𝐶𝐷=
𝐹𝐷

1

2
𝜌𝑈2𝐴

 

where ′𝐹𝐿’ is the lift force (in Newton), ′𝐹𝐷’ is the drag force (in 

Newton), ρ is the density of air (in Kg/m3), ‘A’ is the reference 

area and ‘U’ is the upstream wind velocity. 

1.2.2. X-Foil Program Execution and Results 

The following parameters were used in the X-FOIL program to 

get the relationship between various parameters: 

Reynold’s Number Re=1,500,000 

Range of angles of attack: 0° < 𝛼 < 30° (i.e.’𝛼′ lies between 1 

and 29, with both numbers inclusive) 

Angle of attack increment, ∆𝛼 = 1°  NACA 0020 was adopted 

The table below shows the values of lift coefficient ′𝐶𝐿′, drag 

coefficient ‘𝐶𝐷’ and angle of attack ‘α’ exported from the X-foil 

program: 
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Table 1: Variation of angle of attack ‘α’ with lift coefficient 

′𝑪𝑳’and drag    coefficient ‘𝑪𝑫’. 

Angle of Attack, α Lift Coefficients, 𝐶𝐿 Drag Coefficient, 𝐶𝐷 

        1 0.1103 0.00722 

         2 0.2202 0.00731 

         3 0.3292 0.0075 

         4 0.437 0.0078 

        5 0.5436 0.00817 

        6 0.6481 0.00868 

        7 0.7499 0.00933 

        8 0.8477 0.01012 

        9 0.9383 0.01106 

       10 1.0233 0.01224 

       11 1.1403 0.01382 

       12 1.2562 0.01567 

       13 1.2814 0.01731 

       14 1.338 0.01992 

       15 1.3908 0.02351 

       16 1.4345 0.02834 

       17 1.4633 0.03509 

       18 1.4827 0.04354 

       19 1.4812  0.05488 

       20 1.4624 0.06895 

       21 1.4132 0.08756 

       22 1.3743 0.1056 

       23 1.3179 0.012688 

       24 1.2775 0.14661 

       25 1.2551 0.16422 

       26 1.2319 0.18241 

       27 1.2283 0.19762 

       28 1.2231 0.2133 

       29 1.2265 0.22707 

 

The graphs below show the variation of angle of attack ’α’ with 

lift coefficient ′𝐶𝐿 
′ and drag coefficient ′𝐶𝐷 

′ : 

 

Figure 2 Variation of lift coefficient with respect to angle of 

attack 

 

Figure 3 Variation of drag coefficient with respect to angle 

of attack 

1.3 Blade Element Momentum Theory 

Pitch angle ‘β’=8°,    

Tangential induction factor 𝑎′= 0 

Lift coefficient ′𝐶𝐿′=1.25      Drag coefficient ′𝐶𝐷′= 0.24+0.015(α-

30)  

 

Figure 4 Distance of blade elements from the rotor centre. 

From the figure above, the blade is divided into five elements. 

Also, It is clearly seen from the figure that 𝑟1=1.5m, 

𝑟2=2.5m, 𝑟3=3.5m, 𝑟4=4.5m and 𝑟5=5.5m.  These values were 

used in the iteration process discussed in section 3.1. using 

BEM theory and a MATLAB code was written to perform the 

iteration process. This MATLAB code can be viewed in the 

appendix section of this report. 

The total thrust and torque obtained from the iteration code 

written using MATLAB are: 

Total Thrust ‘T’ = 2.2750 × 103 N 

Total Torque ‘Q’ = 2.3191× 103Nm. 

The power generated ‘𝑃𝐺
′  by the rotor is given by: 
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Power generated ‘𝑃𝐺
′  = Total Torque ‘Q’ × angular velocity of 

the rotor ‘𝛺′ 

Power generated, ‘𝑃𝐺
′  = 2.3191× 103𝑁/

𝑚 ×6rad/s=13914.6Watts 

To calculate the power coefficient,  ′𝐶𝑃′ = 
𝑃𝑜𝑤𝑒𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑃𝑜𝑤𝑒𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 = 

𝑃𝐺
1

2
ρA𝑈∞

3 

Where A = Cross Sectional Area, 

A = 𝜋𝑅2 = 𝜋 × 62= 36π𝑚2=113.1𝑚2 

Power Coefficient ′𝐶𝑃′ = 
13914.6

1

2
×1.2×113.1×83

 =
13914.6

34744.3
 = 0.40 

The value of ′𝐶𝑃′ obtained above indicates that about forty 

percent of the kinetic energy of the undisturbed wind is 

extracted as useful power. 

1.4 Effect of Blade Twist on Rotor Performance 

Twisting of a rotor blade affects the angle of attack ‘α’ and the 

lift to drag ratio ‘
𝐹𝐿

𝐹𝐷
’ [5]. Continuous twist of blade along its length 

helps to achieve optimum angle of attack across the blade’s 

cross-section. As a result of this, the lift is maximized (i.e. high 

lift to drag ratio is obtained), thus increasing rotational moment 

and the power output of the turbine rotor [5], [13].   

 

2 ESTIMATION OF THE TOTAL VERTICAL 

FORCE ACTING ON A PLATFORM DUE TO 

THE DYNAMIC FORCE ONLY 

The following parameters were given to solve the questions in 

this chapter: 

Diameter of each of the two submerged cylinders ‘D’ = 10m. 

Draft ‘T’ = 20m,                                

Width of submersible platform ‘L’= 54m 

Seawater density ‘ρ’= 1025kg/𝑚3, Gravitational acceleration 

‘g’=9.81m/𝑠2 

Monochromatic wave frequency ‘𝜔𝑤′= 0.6rad/s 

Wave height ‘𝐻𝑤′ = 7m. 

In addition, deep water condition is assumed to be valid. 

From Airy wave theory, the velocity potential expression is 

given by: 

𝜙 = −a
ω

𝐾
 𝑒𝑘𝑦c𝑜𝑠 (𝑘𝑥 − 𝜔𝑡) for deep water condition 

Recall dynamic pressure ′𝑃𝑑
′  is given by: 

𝑃𝑑(𝑥, 𝑦, 𝑡) = - ρ
𝜕∅(𝑥,𝑦,𝑡)

𝜕𝑡
 

Differentiating the expression for ‘𝜙’ partially with respect to ‘t’, 

we have: 

𝜕∅(𝑥,𝑦,𝑡)

𝜕𝑡
=  

𝜕

𝜕𝑡
[−a

ω

𝐾
 𝑒𝑘𝑦c𝑜𝑠 (𝑘𝑥 − 𝜔𝑡)] 

𝜕∅(𝑥,𝑦,𝑡)

𝜕𝑡
 = -a

𝜔

𝑘
𝑒𝑘𝑦 × −𝜔 × − sin(𝑘𝑥 − 𝜔𝑡) 

𝜕∅(𝑥,𝑦,𝑡)

𝜕𝑡
 = -a

𝜔2

𝑘
𝑒𝑘𝑦 sin(𝑘𝑥 − 𝜔𝑡) 

Therefore, the dynamic pressure is given by the expression: 

𝑃𝑑(𝑥, 𝑦, 𝑡)= - ρ[-a
𝜔2

𝑘
𝑒𝑘𝑦 sin(𝑘𝑥 − 𝜔𝑡)] 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑃𝑑(𝑥, 𝑦, 𝑡) = ρa
𝜔2

𝑘
𝑒𝑘𝑦 sin(𝑘𝑥 − 𝜔𝑡) 

In order to get the final expression for the dynamic pressure, the 

unknown parameters in the above expression need to be found 

as shown below: 

Amplitude ‘a’ =
𝐻𝑤

2
 = 

7

2
 = 3.5m,  

Wave Period ‘𝑇𝑤 ’ = 
2𝜋

𝜔𝑤
 = 

2𝜋

0.6
 = 10.47s 

Wavelength ‘λ’ = 1.56× 𝑇𝑤
2 = 1.56× 10.472 = 171m 

Wave number ‘k’ = 
2𝜋

𝜆
 = 

2×3.142

171
 = 0.037rad/m 

The final expression for the dynamic pressure is: 

𝑃𝑑(𝑥, 𝑦, 𝑡) = 1025×10.47×
0.62

0.037
× 𝑒0.037𝑦 × sin(0.037𝑥 − 0.6𝑡) 

 𝑃𝑑(𝑥, 𝑦, 𝑡) = 104417𝑒0.037𝑦 sin(0.037𝑥 − 0.6𝑡)N/𝑚2. 

2.1 Heave Equation of Motion 

The heave equation of motion (time domain), assuming that at 

first approximation the heave degree of freedom is decoupled 

from the other degree of freedom is given by: 

(m + A) z’’ + Cz = F(t) 

Where m= mass of the submersible, A= added mass 

C= hydrostatic stiffness. 

Since the body is a freely floating body, Archimedes’ principle 

can be applied: 

Weight of fluid displaced = Weight of the floating body 

ρVg=mg. Therefore, mass of the body ‘m’ can be obtained from: 

Mass of floating body= ρ× V 

where displaced volume ‘V’ =submerged volume=2𝜋𝑟2𝑇 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 11, Issue 11, November-2020                                                                                        323 
ISSN 2229-5518    
 

IJSER © 2020 

http://www.ijser.org 

 

Displaced volume ‘V’ = 2× 𝜋 × 52 × 20 = 3141.6𝑚3 

Mass of floating body ‘m’  = 1025 × 3141.6 = 3220140kg/𝑚3 = 

3.22× 106𝑘𝑔/𝑚3 

The added mass coefficient ‘′𝐶𝑎′ chosen from the appendix of 

[21]DNV RP (2014) by considering the vertical motion of the 

body and its body shape (chosen as circular disc) is: 

Added mass coefficient ′𝐶𝑎′ = ( 
2

𝜋
) = 0.64 

To calculate the restoring coefficient ‘C’ , we have: 

Restoring coefficient ‘C’ = 2𝜋ρ𝑔𝑟2 = 2× 𝜋 × 1025 × 9.81 × 52 = 

1579475N/m 

The heave undampened natural frequency of the submersible 

can be estimated as shown below: 

Undampened natural frequency ′ω0’= √
𝐶

𝑚+𝐴
 

Undampened natural frequency ′ω0’ = √
1579475

3220140+A
 

Where added mass ‘A’ =2 × 𝐶𝑎 × ρ × 𝑉𝑅= 2 × 0.64 × 1025 ×
4

3
𝜋 × 53 

(Reference Volume =
4

3
𝜋𝑅3) 

Added mass ‘A’ = 687050.7kg 

Thus, Undampened natural frequency 

becomes:

  

Undampened natural frequency, 

′ω0’ = √
1579475

3220140+687050.7
 = √

1579475

3907190.7
 

′ω0’ = 0.64rad/s. 

2.2 Natural Frequency in Heave Versus Typical Wave 

Energy Spectra 

The following parameters were substituted into the Pierson-

Moskowitz 𝑆𝑃𝑀 (𝜔)  and JONSWAP wave spectrum 𝑆𝑗(𝜔)  with 

the value of frequency ‘𝜔’ from 0 to 4.0: γ=3.3, H=7m, 

𝜔𝑝 =0.6rad/s, 𝜎= 0.09 (since ω> 𝜔𝑝 ), 

 A=1-ln 𝛾=1-ln(3.3) = 0.657344252. 

The varied values of ′𝜔′ are plotted against the corresponding 

values of PM spectrum and JONSWAP spectrum. The natural 

frequency in heave ‘𝜔0’ of the platform coincides with the 

highest energy spectrum for both Pierson-Moskowitz 𝑆𝑃𝑀 (𝜔)  

and JONSWAP wave spectrum 𝑆𝑗(𝜔). Also, it is clearly seen 

from the graph below that JONSWAP wave spectrum 𝑆𝑗(𝜔) has 

more energy than Pierson-Moskowitz 𝑆𝑃𝑀 (𝜔) wave spectrum 

at the natural frequency (i.e. ω0 = 0.64rad/s) in heave of the 

platform obtained from the previous section. 

 

 

Figure 5 Wave Energy Spectra 

3 ESTIMATION OF HIGHEST SIGNIFICANT 

WAVE HEIGHT USING WEIBULL PDF. 

Given parameters include: 

Weibull fitting parameter a’=0.5              

Added mass coefficient ′𝐶𝑎’ = 1.0 

Drag Coefficient ′𝐶𝑑′ = 0.8                       

Gravitational acceleration ‘g’ = 9.8m/𝑠2 

Highest wave period  ‘𝑇𝐻𝑚𝑎𝑥′= 13s   

Diameter ‘D’ = 3m 

Length of member ‘L’ = 15m   

Draft ‘F’ = 75 

Return period ‘R’ =1 year     

Seawater density ‘ρ′ = 1025kg/𝑚3 

Seawater Viscosity ‘v’=1.05× 10−6𝑚2/𝑠     

Water depth ‘d’ =200m 

JONSWAP, peak frequency ‘𝜔𝑝’ = 0.45rad/s 

JONSWAP, peak shape par ‘γ’ = 3.3 

Table 2  Weibull Distribution Data 

H/m 𝑃𝐶𝐿(H) ln(𝐻 − 0.5) 
ln[ln(

1

1 − 𝑃𝐶𝐿(H)
)] 

1 0.074 -0.693 -2.565 

2 0.336 0.405 -0.893 

3 0.629 0.916 -0.008 

4 0.825 1.253 0.556 

5 0.925 1.504 0.952 

6 0.968 1.705 1.236 
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7 0.986 1.872 1.451 

8 0.994 2.015 1.632 

9 0.998 2.140 1.827 

10 10 2.251    0 

The probability that the wave will be lower than the 1year return 

wave:   𝑃1(H) =P(H<𝐻1)= 1- 
3ℎ

24
ℎ

𝑑
×365.25

𝑑

𝑦
×1𝑦

 ≈ 0.9997 

Thus;  

                                           

ln[ln(
1

1−𝑃1(H)
)]=ln[ln(

1

1−0.9997
)]=2.093 

With the table above, a Weibull plot was created as shown 

below: 

 
Figure 6 Weibull Plot 

It can be seen from the Weibull plot that the equation of the line 

is: 

Y=1.5654x-1.4683 and 

Correlation Coefficient “R” =0.9988. 

The value of ‘R’ shows that a very strong relationship exists 

between the values plotted, as it is close to 1.0. To know the 

corresponding value of ln(1 − 𝑎′)  (i.e. value on x-axis) when 

ln[ln(1 − 𝑃(𝐻))−1]=2.093, we use the equation of the line 

described above: 

2.093 =1.5654x-1.4683 

1.5654x=2.093+1.4683 

1.5654x=3.5613.  

Thus, x=
3.5613

1.5654
=2.275 

Therefore, the corresponding value of ln(1 − 𝑎′) when 

ln[ln(1 − 𝑃(𝐻))−1]=2.093 is 2.275. Thus, the maximum 

significant wave height for the 1year return period is given by: 

ln(𝐻1 − 𝑎′)=2.275 

𝐻1=𝑒2.275+ a’=9.73+0.5 (where a’=0.5) 

𝐻1=10.23m≈ 10𝑚 

Therefore, the maximum significant wave height for one year 

return period is 10m. 

3.1 Calculation of Highest Wave Height likely to occur 

in   One Year Return Period. 

The parameters given to calculate the highest wave height likely 

to occur are: 

JONSWAP, peak frequency ‘𝜔𝑃′ =0.45rad/s 

JONSWAP, peak shape par ‘𝛾′ = 3.3 

Peak frequency ‘𝜔𝑃′=
2𝜋

𝐽𝑂𝑁𝑆𝑊𝐴𝑃,𝑃𝑒𝑎𝑘 𝑝𝑒𝑟𝑖𝑜𝑑
 = 

2𝜋

𝑇𝑝
 

Thus, JONSWAP, peak period ′𝑇𝑝’ =
2𝜋

𝜔𝑃
= 

2𝜋

0.45
=

2×3.142

0.45
= 

6.284

0.45
= 

13.96s 

In section 3.5.5 of DNV-RP-C205[21] , JONSWAP, peak period 

′𝑇𝑝’ is approximated as: 

𝑇𝑝=1.2859𝑇𝑍, when ‘𝛾′ = 3.3 

𝑇𝑍=
𝑇𝑝

1.2859
 = 

13.96

1.2859
 = 10.86s 

Thus, the zero up-crossing wave period, 𝑇𝑍 is 10.86s. 

Thus, to calculate the mean wave period 𝑇1=1.0734𝑇𝑍= 

1.0734×10.86 

Mean wave period 𝑇1 = 11.66s. 

Therefore, the total number of waves ‘𝑁𝑤𝑎𝑣𝑒𝑠′ to be encountered 

in 3 hours is given by: 

 

𝑁𝑤𝑎𝑣𝑒𝑠= 
𝑡

 𝑇1 
 = 

3×3600

11.66
 = 926.24waves 

𝑁𝑤𝑎𝑣𝑒𝑠 ≈ 926 waves will be encountered 

The probability of obtaining the highest wave likely to occur is: 

P (𝐻𝑚𝑎𝑥) = 
𝑁𝑤𝑎𝑣𝑒𝑠−1

𝑁𝑤𝑎𝑣𝑒𝑠
 = 

926−1

926
 

P (𝐻𝑚𝑎𝑥) = 
925

926
 = 0.999 

The highest wave likely to occur in the given return period, 𝐻𝑚𝑎𝑥 

is given by: 

𝐻𝑚𝑎𝑥=√ln(1 − 𝑃( 𝐻𝑚𝑎𝑥)) ×
𝐻2

1/3

−2
 where 𝐻1/3 = 10.23𝑚 

𝐻𝑚𝑎𝑥= √ln(1 − 0.999) ×
10.232

−2
 

𝐻𝑚𝑎𝑥=√361.458 = 19.01m≈19m. 

Therefore, the highest wave likely to occur in the given return 

period is 19m. 

3.2 Selection of Appropriate Wave Theory 

In order to select the appropriate wave theory, we need to 

calculate the following parameters: 

1. 
𝑑

𝜆
: To calculate the wavelength ‘λ’ of the wave we use: 

λ = 1.56× 𝑇2
𝐻𝑚𝑎𝑥 where 𝑇𝐻𝑚𝑎𝑥= 13s. 

λ =1.56 X132= 1.56 X169 

y = 1.5654x - 1.4683
R² = 0.9988

-4

-2

0

2

4

6

-2 0 2 4 6

ln
[l
n
(1

−
𝑃

(𝐻
))

^(
−

1
) 

]
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λ=263.64m. 

Given depth of water ‘d’=200m:  
𝑑

𝜆
= 

200

263.64
≈ 0.76 

 Since 
𝑑

𝜆
≫

1

20
 (i.e. 0.76≫0.05), therefore we assume deep-

water condition. 

2. 
𝐻

𝑔𝑇2
: To calculate this, we use the values of 𝐻𝑚𝑎𝑥 and 

𝑇𝐻𝑚𝑎𝑥 as stated in the question: 

𝐻𝑚𝑎𝑥

𝑔𝑇2
𝐻𝑚𝑎𝑥

= 
19

9.81×132
 = 

19

9.81×169
 =

19

1657.89
 = 0.0115. 

Where acceleration due to gravity ‘g’ =9.81m/𝑠2 

3. 
𝑑

𝑔𝑇2
: To calculate this, we use the values of ‘d’ and 

𝑇𝐻𝑚𝑎𝑥 as stated in the question:             

𝑑

𝑔𝑇2
𝐻𝑚𝑎𝑥

= 
200

9.81×132
 =

200

9.81×169
 = 

200

1657.89
 = 0.121. 

Figure 7 Graph of range of validity for wave theories [22]. 

From the figure above, by tracing the point 0.0115 on the 

vertical axis and 0.121 on the horizontal axis, it is seen that the 

point of intersection of these two points in the Stoke’s 3𝑟𝑑 order 

region of the graph. Thus, Stoke’s 3𝑟𝑑 order should be used. 

3.3 Estimation of Wave Force Using Morison 

Approach 

In order to demonstrate that the wave force can be estimated 

using Morison approach [23], [24], we need to calculate the 

parameters listed below:  

1. 
𝑀𝑒𝑚𝑏𝑒𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 
=

𝐷

𝜆
: 

If 
𝐷

𝜆
< 0.2, then the characteristics of the incident wave is not 

significantly altered (i.e. a small volume structure), therefore 

Morison equation will be applicable.Thus:  Where Member 

Diameter ‘D’ = 3m 

          Wavelength ’λ’= 263.64m (as calculated in section 3.3) 

Therefore; 
𝐷

𝜆
=

3

263.64
 =   0.0114 

Since 0.0114≪ 0.2, Morison equation is applicable to estimate 

the wave force. 

2. Keulegan-Carpenter number ′𝐾𝐶 ′ = 
 𝑈𝑚×𝑇𝐻𝑚𝑎𝑥

𝐷
 

Where 𝑈𝑚= Maximum normal water particle velocity, 

D= Member Diameter = 3m, 𝑇𝐻𝑚𝑎𝑥= Highest wave 

Period= 13s. 

The value of ′𝑈𝑚′ can be determined from Airy wave theory 

velocity potential as shown below: 

𝜙 = −a
ω

𝐾
 𝑒𝑘𝑦c𝑜𝑠 (𝑘𝑥 − 𝜔𝑡) 

The above equation holds for deep water condition. 

The vertical velocity is given by: 

U=  
𝜕∅

𝜕𝑋
= 

𝜕

𝜕𝑋
[−a

ω

𝐾
𝑒𝑘𝑦 cos(kx –  ωt)] 

U= a𝜔𝑒𝑘𝑦 sin(𝑘𝑥 − 𝑤𝑡) 

 Therefore, the maximum horizontal velocity ′𝑈𝑚
′  occurs at 

waterline level (i.e. y=0) and when (𝑘𝑥 − 𝑤𝑡) equals 90°, thus: 

𝑈𝑚= aω = 
𝐻𝑚𝑎𝑥

2
 ×

2𝜋

𝑇𝐻𝑚𝑎𝑥
 = 

𝜋𝐻𝑚𝑎𝑥

𝑇𝐻𝑚𝑎𝑥
 

𝑈𝑚= 
3.142×19

13
 = 4.59m/s. 

Now, the Keulegan-Carpenter number ′𝐾𝐶 ′ can be estimated as: 

𝐾𝑐= 
4.59×13

3
= 19.89 

Since 5< 𝐾𝑐 <25 (i.e. 5< 19.89 <25), only Morison equation is 

applicable to estimate the wave force. The table below explains 

this better, as this situation falls in the intermediate regime 

based on the values obtained above: 
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Figure 8 Wave Loading Regimes [25]. 

To derive the expression for the total vertical force due to the 

wave acting on the offshore structure [26]–[30] (i.e. a horizontal 

cylinder normal to the wave), we have: 

Total Vertical Force 𝐹𝑉 = Inertia Force (𝐹𝐼) + Drag force (𝐹𝐷) 

𝐹𝑉 = ∫ (𝐶𝑀ρπ𝑟2�̇�𝑑𝑥̇  +  𝐶𝐷ρr|V|Vdx)

𝐿
2

−𝐿
2

 

Where 𝐶𝑀= Inertia Coefficient=added mass coefficient + 1= 

𝐶𝑎 + 1  

Given added mass coefficient 𝐶𝑎 = 1; Thus 𝐶𝑀= 1+1= 2 

Seawater density ‘ρ’ = 1025kg/𝑚3, Radius ‘r’ =
𝐷

2
 = 

3

2
 =1.5m 

Length ‘L’ =15m    Drag coefficient ′𝐶𝐷′= 0.8 

The values of vertical acceleration ‘�̇�’ and vertical velocity ‘V‘ 

can be calculated using Airy wave theory velocity potential as 

shown below: 

𝜙 = −a
ω

𝐾
 𝑒𝑘𝑦c𝑜𝑠 (𝑘𝑥 − 𝜔𝑡) for deep water condition 

Vertical velocity ‘V’ = 
𝜕∅

𝜕𝑌
= 

𝜕

𝜕𝑌
[−a

ω

𝐾
𝑒𝑘𝑦 cos(kx –  ωt)] 

Vertical velocity ‘V’= -aω𝑒𝑘𝑦 cos(kx –  ωt) 

Vertical acceleration ′�̇�′ =
𝜕𝑉

𝜕𝑡
 = 

𝜕

𝜕𝑡
[-aω𝑒𝑘𝑦 cos(kx –  ωt)] 

Vertical acceleration ′�̇�′= -a𝜔2𝑒𝑘𝑦 sin(kx –  ωt) 

The values of wave number ’k’, amplitude ‘a’ and circular 

frequency ’ω’ are calculated as shown below: 

Wave number ‘k’ =
2𝜋

𝜆
 = 

2×3.142

263.64
= 

6.284

263.64
 ≈ 0.024rad/m, 

Amplitude ‘a’ = 
𝐻𝑚𝑎𝑥

2
 = 

19

2
 = 9.5m, 

Circular Frequency ’ω’ = 
2𝜋

𝑇𝐻𝑚𝑎𝑥
 = 

2×3.142

13
 = 

6.284

13
 ≈0.48rad/s. 

Therefore, the expressions for the vertical velocity ‘V’ and 

vertical acceleration ′�̇�′ are shown below: 

Vertical velocity ‘V’ = -9.5×0.48× 𝑒0.024𝑦 × cos(0.024𝑥 − 0.48𝑡) 

                            ‘V’= -4.56𝑒0.024𝑦 cos(0.024𝑥 − 0.48𝑡) 

Vertical acceleration ′�̇�′= -9.5× 0.482 × 𝑒0.024𝑦 × sin(0.024𝑥 −

0.48𝑡) 

′�̇�′ = -2.189𝑒0.024𝑦 sin(0.024𝑥 − 0.48𝑡) 

The total vertical force becomes: 

Total vertical force 𝐹𝑉= ∫  (𝐶𝑀ρπ𝑟2�̇�𝑑𝑥̇  +  𝐶𝐷ρr|V|Vdx)
15

2
−15

2

 

Vertical Inertia force 𝐹𝐼=  ∫ 𝐶𝑀ρπ𝑟2�̇�𝑑𝑥̇  
7.5

−7.5
 

 𝐹𝐼= ∫  [
7.5

−7.5
2 × 1025 × 3.142 × 1.52 ×

−2.189𝑒0.024𝑦 sin(0.024𝑥 − 0.48𝑡) dx] 

𝐹𝐼 = ∫  [
7.5

−7.5
-31724.03𝑒0.024𝑦 sin(0.024𝑥 − 0.48𝑡) dx] 

𝐹𝐼 = -31724.03𝑒0.024𝑦 ∫  [
7.5

−7.5
sin(0.024𝑥 − 0.48𝑡) dx] 

𝐹𝐼 =31724.03𝑒0.024𝑦[
cos(0.024𝑥−0.48𝑡)

0.024
]−7.5

7.5 =

 
31724.03

0.024
𝑒0.024𝑦[cos(0.024𝑥 − 0.48𝑡)]−7.5

7.5  

𝐹𝐼 =1321834.6𝑒0.024𝑦[cos((0.024 × 7.5) − 0.48𝑡) - cos((0.024 ×

−7.5) − 0.48𝑡)] 

𝐹𝐼 =1321834.6𝑒0.024𝑦[cos(0.18 − 0.48𝑡) - cos(−0.18 − 0.48𝑡)] 

𝐹𝐼= 1321834.6 𝑒0.024𝑦 [cos(0.18 − 0.48𝑡) − cos(−0.18 − 0.48𝑡)] 

Taking y=0 

𝐹𝐼 = 1321834.6[cos(0.18 − 0.48𝑡) − cos(−0.18 − 0.48𝑡)] 

Therefore, the inertia force component ′𝐹𝐼′ of the vertical force 

is 1321834.6[cos(0.18 − 0.48𝑡) − cos(−0.18 − 0.48𝑡)]. 

To calculate the Drag force component, 𝐹𝐷 , of the total vertical 

force, we have: 
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𝐹𝐷 = ∫ 𝐶𝐷ρr|V|Vdx
7.5

−7.5
 

𝐹𝐷 =∫ [0.8 × 1025 × 1.5 ×
7.5

−7.5
| − 4.56𝑒0.024𝑦 cos(0.024𝑥 −

0.48𝑡)| ×                          ( − 4.56𝑒0.024𝑦 cos(0.024𝑥 − 0.48𝑡))]𝑑𝑥 

𝐹𝐷 = 25576.13∫ [|𝑒0.024𝑦 cos(0.024𝑥 − 0.48𝑡)| ×
7.5

−7.5

    ( 𝑒0.024𝑦 cos(0.024𝑥 − 0.48𝑡))]𝑑𝑥         

Taking y=0, the above integral for drag force component ‘𝐹𝐷 ′ is 

evaluated using MATLAB software and the result is shown 

below: 

𝐹𝐷 =532836.04sin(0.096𝑡) -266418sin(0.096𝑡 − 0.36) - 

266418sin(0.096𝑡 + 0.36) 

The total vertical force acting on the offshore structure is: 

𝐹𝑉 =  𝐹𝐼+ 𝐹𝐷  

 Th e total vertical force acting on the offshore structure is: 

𝐹𝑉 =1321834.6𝑒0.024𝑦[cos(0.18 − 0.48𝑡) − cos(−0.18 − 0.48𝑡)] 

+532836.04sin(0.096𝑡) -266418sin(0.096𝑡 − 0.36) - 

266418sin(0.096𝑡 + 0.36) 

The figure below shows how inertia force ′𝐹𝐼′ , drag force 

′𝐹𝐷 ′and total vertical force ′𝐹𝑉′ vary with time:  

 
Figure 9 Variation of Force with Time 

3.4 Limitations of Approaches Adopted in Previous 

Steps 

Weibull distribution was the approach used in section 3.1 and it 

can only be used to estimate long-term wave properties, usually 

10 years and above[22]. It is obvious that there are no data 

measurements covering a period of at least 100 years 

properties, thus estimates rely on extrapolation of wave 

properties measured by devices over a period of 3 years[22]. In 

conclusion, Weibull distribution is prone to error as every 

estimate depends on extrapolation[22]. 

JONSWAP wave spectrum was used in section 3.2 can only be 

used to analyze the wave properties of young seas [22]. Also, 

JONSWAP spectrum is applicable to only random unidirectional 

sea. Stoke’s 3𝑟𝑑 order theory suggested in section 3.3 is only 

applicable for deep water but it isn’t applicable for shallow 

water, when d<
𝜆

8
  [31]. 

Finally, Morison approach used in section 3.4 is not applicable 

for calculating the wave loads on an offshore structure when the 

ratio of its diameter (D) to the 

wavelength (𝜆) of the incident wave is greater than 0.2(i.e. 
𝐷

𝜆
>

0.2) or when the offshore structure is big enough to change the 

incident wave characteristics [25]. 

In addition, the partly used Airy linear wave theory in section 3.4 

is not applicable for high height waves, that is why it is referred 

to as small amplitude theory [22][8], [32]. 

4    CONCLUSION 

The value of the power coefficient (𝐶𝑝 =0.40) obtained in 

section one indicates that about forty percent of the kinetic 

energy of the undisturbed wind that flows to the swept area of 

the rotor can be extracted as useful power [19]. In addition, the 

twisting of the blades of a horizontal axis wind turbine has a 

positive impact on the performance of its rotor, as twisting 

optimize angle of attack and maximize the lift force [19]. Others 

factors that improves the performance of a horizontal axis wind 

turbine are high lift-to-drag ratio, high maximum lift coefficient 

and high tip speed ratio [19], [33]–[35]. 

More so, the natural frequency in heave ‘𝜔0’ of the platform in 

section 2 coincides with the highest energy spectrum for both 

Pierson-Moskowitz 𝑆𝑃𝑀 (𝜔)  and JONSWAP wave spectrum 

𝑆𝑗(𝜔). Also, it is clearly seen from the graph below that 

JONSWAP wave spectrum 𝑆𝑗(𝜔) has more energy than 

Pierson-Moskowitz 𝑆𝑃𝑀 (𝜔) wave spectrum at the natural 

frequency (i.e. ω0 = 0.64rad/s) in heave of the platform. 
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